版权说明 操作指南
首页 > 成果 > 详情

Feature Selection Using Smooth Gradient L1/2 Regularization

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Gao, Hongmin;Yang, Yichen;Zhang, Bingyin;Li, Long;Zhang, Huaqing;...
通讯作者:
Wu, Shujun
作者机构:
[Yang, Yichen; Zhang, Huaqing; Zhang, Bingyin; Wu, Shujun; Gao, Hongmin] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China.
[Li, Long] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Peoples R China.
通讯机构:
[Wu, Shujun] C
China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China.
语种:
英文
关键词:
Multilayer neural networks;Multilayers;Neural networks;Feature selection methods;Gradient descent;Gradient Descent method;Multi-layer perceptron neural networks;Multilayer network models;Non-smooth;Regularizer;Smoothing techniques;Feature extraction
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2017
卷:
10637 LNCS
页码:
160-170
会议名称:
24th International Conference on Neural Information Processing, ICONIP 2017
会议论文集名称:
Neural Information Processing
会议时间:
14 November 2017 through 18 November 2017
会议地点:
Guangzhou, PEOPLES R CHINA
会议主办单位:
[Gao, Hongmin;Yang, Yichen;Zhang, Bingyin;Zhang, Huaqing;Wu, Shujun] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China.^[Li, Long] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Peoples R China.
会议赞助商:
Chinese Acad Sci, Inst Automat, Guangdong Univ Technol, S China Univ Technol, Springers Lecture Notes Comp Sci, IEEE CAA Journal Automatica Sinica, Asia Pacific Neural Network Soc
主编:
Derong Liu<&wdkj&>Shengli Xie<&wdkj&>Yuanqing Li<&wdkj&>Dongbin Zhao<&wdkj&>El-Sayed M. El-Alfy
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer Verlag
ISBN:
9783319700922
基金类别:
Acknowledgements. This work was supported in part by the National Natural Science Foundation of China (Nos. 61305075, 11401185), the China Postdoctoral Science Foundation (No. 2012M520624), the Natural Science Foundation of Shandong Province (Nos. ZR2013FQ004, ZR2013DM015, ZR2015AL014), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130133120014), the Fundamental Research Funds for the Central Universities (Nos. 14CX05042A, 15CX05053A, 15CX08011A, 15CX02064A) and the University-level Undergraduate Training Program for Innovation and Entrepreneurship (No. 20161349).
机构署名:
本校为其他机构
院系归属:
数学与统计学院
摘要:
In terms of L1/2 regularization, a novel feature selection method for a neural framework model has been developed in this paper. Due to the non-convex, non-smooth and non-Lipschitz characteristics of L1/2 regularizer, it is difficult to directly employ the gradient descent method in training multilayer perceptron neural networks. A smoothing technique has been considered to approximate the original L1/2 regularizer. The proposed method is a two-stage updating approach. First, a multilayer network model with smoothing L1/2 regularizer is trained...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com